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3.8.2

cfficiency. which relates to concentrating the encrgy at low trequencies, case of com-
putation. and minimum mean square error. The ideal ransform (or achieving these is
the Karhunen-loéve translform. but this cannot be represented afgorithmically. How-
ever. the discrete costne transform (DCT) has virtually the same properties and does
possess an algorithim. 1t consists essentially of the real part of the DET. This definition
15 reasonable since the Fourter series of o real and even tunction contains only the
coste terms, amd in, for example, the case of sampled voltage values the data vsed is
real and can be made symmetrical by doubling the data by adding its mirror image,
Thus the DFT is given by (Equation 3.41)
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Defining the DCT X (4) as the real part of this gives
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This is one of several forms of the DCT. A more commaon torm is (Beauchamp, 1987;
Yip and Ramamohan, 1987; Ahmed and Rao. 1975)
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and other forms alse exist (Yip and Ramamohan. 1987: Penuchaker and Mitchelt,
1993; Pitas, 1993: Bailey and Birch, 1989).

Implementations of the DCT exist based on the FFT as might be expected
(Narasinka and Petersen. 1978). and a fast DCT which is six times as fast as these
has been developed (Chen er al, 1977). Another version is the Comiatiix transform
which can be more simply constructed in hardware (Srimvassan and Rao, 1983).

Walsh transform

The transtonms discussed so far have been based on cosine and sine functions. Trans-
forims based on pulse-like wavelorms which take only values of L1 are much simpler
and faster to compute. They are also more appropriate for the representation of
waveforms which contain discontimuties. for example in images. Conversely, they are
tess appropriate for describing continwous wavetorms and may not be phase invarant
in which casc the derived spectrum may be distorted. However, such wavelonns are
used in image processing (astronomy and spectroscopy), signal coding, and filtering.

Just as the DET is based on a sct ol harmonically retated cosine and sine
wavelorms, so is the diserete Walsh transform (DWT) based on a sel of harmomcally

related rectangular waveforms. known as Walsh functions, However, frequency is not
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Figure 3.6 Scquency-ordered Walsh tunctions to 27 = 7 showing sampling times for $ x 8
Walsh transform matix.

defined for rectangular waveforms and so the analogous .lcrvm sulucncy‘ is used.
Sequency is half the average numberof zcro cros ings per unit lime. I‘lgur_c 3.6 sh(\.ws
the set of Walsh functions up to the order of & = 8 drawn 1 order of increasing
sequency. They are said (o be sequency, or Walsh, m'dcrcd.. T hc.\)\"'al.\‘h function .’IF
time 1 and of sequency # is designaled WAL(n, 7). Inspection of Figure 3.6 shows
that there are equal numbers of even and odd Walsh functions, just as {Imrc are
corresponding cosinusoidal and sinusoidal Fourier .\cric? cu.mpnncnl\‘. The cven
Tunctions, WAL(2k. 1). are written CAL(A, ), and the odd functions, WAL + 1, 1),
are written SAL(K, 1). where k= 1,20 ..., N/2 - | . ) ) ‘

Any wiveform, f(7), may be writen as a Walsh function serics, analogous 10 a

Fourier series, as
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f0) = & WAL, 1) + 3 3 (e SALA, 1)+ b, CALG. 1] (368)
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where the a,and b, are the series cocf licients.
For any two Walsh functions,
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v N forn=m Therefore, from Equation 3.7 s give :
ZW/\L(IH. 1) WALGH 0 = ( quation 3.7 1, X is given by i1
! =0 0 foran#m | v | L
B 5o
that is, Walsh functions arc orthogonal. X, =14 20 3 : : - I =46 0 2 -4 . ;‘)
The discrete Walsh transform pair is : -.I : : :
(S ‘
Xo=— 2‘) NWALK, Y k=001 N~ ! (3.69) so that X, = 1.5, X, = 0. X, = 0.5 and X, = ~ 1. This is considerably casicr to caleulate
o than the corresponding DET! Needless to say, fast DWTs (FDWTS) exist
and The corresponding spectruin can be caleulated with power components given by !
- ik = [|CALGK, nf y R i
xe 3 XWALGKL ) P20 N 3.70) (CALGK. 0l + [SALG DI il
0 where 3
where we note that, apart from the factor of 1/N, the inverse transform is the same 5 i Z
as the transform. and that WAL(k, 1) = 41, The transform pair may, therefore, be P) =X () ]
caleulated by matrix multiplication by digital means as mentioned above. However, Plky= X (k. 1) + Xk, 1) G
the Tack of phase invariance means that the DWT is unsuitable for fast correlations or N N ’ }
convolutions. [’(, ) = )‘( B ,)
Equation 3.69 shows that the kth DWT component is obtained by multiplying cach < 2 %
waveform sample x, by the Walsh function of sequency k and summing for k =0 wher . H
! R X ’ here k=1.2, ... N/2 -1 . bt 1
: L. N = 1. This may be expressed for all k [WT components in malrix notation as / I and with phase components i
| :
0)=0,
X =xW, 37 @) r s
oty = tan 1 S R 32
where X; = {4, 4, ¥ . . . vy | the data sequence. o(k) = tan .l k=12 .. N2~ (3.74) 4 ;
Wi Wo. o W and 3 3%
W, - ‘VH : N :'
Wi, Wore oo Waows ¢(>2 ) S 2kmb /20 k=00010200 ;
Jhe Walsh transform matrix. and X, = {X, X, .. Xyl the V-1 components of the For o X
. : R “or the above DWT we have. thercfore
DWT. Note that W, is an N x N matrix where N is the number of data points, that is e we have. thercfore
sampled waveform points. Thus, if there are N data points it 18 necessary 10 consider PO = 1.5 =225 9(0) = 0. 1 ; 1
the first ¥ sequency-ordered Walsh functions. Each one is sampled ¥ times. The kth . o
. row of W, corresponds to the N sampled vatues of the kth sequency component. P =0 £ 05 - 025 o) =1 ,[ 0 ] o
: = 5 =025 =tan |- - |=
0.5
Example 3.6 As an example, let us compute the PWT of the data sequence (1, 2, 0. 3). This consists Py =(-1Y=1:902) = T okr k=0.1.2 ;
of N =4 data points and so Wy is ad % 4 matrix obtainable from the first four rows of 2 [
Figure 3.6 as T e T T T T T T
| I N .
Vo a7 3.8.3 Hadamard transform ;
W, 3. . :
[ . i The Hadamard wansform. or Walsh-Hadamard transform, is basically the same as the <
-1 1 - Walsh transform. but with the Walsh functions and therefore the rows ol the ransform
B
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