EE420 quiz-10b

Last time, we almost designed a 5th order Butterworth filter:

$$\alpha_p = .5 \text{ dB for } |f| \le f = 1 \text{kHz}$$

$$\alpha_s = 20 \text{ dB for } |f| \ge f = 2 \text{kHz}$$

We found that we needed a 5th order filter, with transfer function:

$$G(s) = \frac{(7753)^5}{(s + 7753)(s^2 + s(1.618)(7753) + (7753)^2)(s^2 + s(0.618)(7753) + (7753)^2)}$$

or..

$$G(s) = \frac{1}{(s/7753 + 1)(s^2/7753^2 + s(1.618/7753) + 1)(s^2/7753^2 + s(0.618/7753) + 1)}$$

You need to design the filter. It doesn't matter what the passband gain is. It looks like a first order section:

$$G_1(s) = \frac{1}{s/7753 + 1}$$

and two second order sections:

$$G_2(s) = \frac{k_2}{(s^2/7753^2 + s(1.618/7753) + 1)}$$

and...

$$G_3(s) = \frac{k_3}{(s^2/7753^2 + s(0.618/7753) + 1)}$$

Here's the schematic:

Use an "equal component value" design, with most resistors = 10k. Hint:

- 1. Scale the frequency: $C = C_N/\omega$
- 2. Scale for the resistance: $C = C_{(R=1)}/R$ Keep RC constant.
- 3. Set the damping: $R_4 = R_3(2-d)$

	Section A	Section 3	Section
R_1			
R_2	XXXX		
R_3	XXXX		
R_4	XXXX		
C_1			
C_2	XXXX		