
July 8, 2004

1 of 19

Version 6 The promise that comes from supporting compact modeling in Verilog-A/MS is the
release of the designers from the tyranny of proprietary models. However, that promise
is only half satisfied if only the model equations are supported in Verilog-A/MS. While
having a industry standard language for expressing model equations is critically impor-
tant, it does not address the problem of proprietary .model files. To completely fulfill the
promise, we must provide non-proprietary industry standard equivalents to all of the
capabilities currently used in SPICE .model files. That includes support for the .model
statements themselves, plus support for process corners, Monte Carlo analysis, etc.

This proposal is geared at providing the capabilities in Verilog-A/MS needed to replace
the SPICE .model files, but in a way that is substantially more flexible.

paramset:
A Verilog-A/MS
Implementation of SPICE

.model Statements



paramset: A Verilog-A/MS Implementation of SPICE .model Statements SPICE .model statements

2 of 19

1.0 SPICE .model statements

SPICE provides the venerable .model statement to allow users to specify parameters that
would be common to many instances once in one place. Generally it is used for semi-
conductor devices, where there are a large number of process parameters that are shared
with all instances of a certain device type; these parameters are referred to as “model
parameters.” The instantiation line for the devices in the netlist would generally only
give geometrical parameters (such as width and length), which are called “instance
parameters.” For efficiency, SPICE allows a .model statement to be associated with only
one type of device and hard-codes the parameters that it may take. That way the device
models may be compiled to expect parameters to be stored in a common place, decreas-
ing evaluation time. Storage efficiency is increased because SPICE stores each model
parameters (of which there may be hundreds) only once for many instances (hundreds
or thousands or more) that all share the model parameters.

Verilog-A/MS does not differentiate between “instance” and “model” parameters, so
that many SPICE-like simulators cannot take advantage of the storage efficiency. While
one could consider introducing these qualifiers for the Verilog parameter declaration,
there are increasing numbers of situations that the .model statement is not capable of
handling efficiently. The causes and types of the limitations are described in the remain-
der of this chapter.

1.1 Inflexible partition between instance and model parameters

In standard SPICE, the implementor of the model decides a priori which parameters
should be instance parameters and which should be model parameters. Typically, the
instance parameters are a few geometry values, and everything else has been designated
a model parameter. There are two reasons why this partitioning is becoming problem-
atic: increasing numbers of layout effects, and the increasing need for Monte-Carlo
analysis.

As semiconductor technology advances to smaller feature sizes, additional information
about the transistor geometry is required for accurate simulation: not only the length and
width of a MOSFET’s gate, but whether the gate is contacted on both sides (decreasing
gate resistance), whether the MOSFET shares source or drain diffusion with a neighbor-
ing device (reducing capacitance), and length of that diffusion (for hydrostatic stress
effects). Gate resistance now requires an instance parameter, not just a model parameter
for the sheet resistivity of the polysilicon.

For Monte Carlo analysis, designers want to capture the effects of instance-to-instance
variation of various quantities that are typically described as model parameters, such as
the threshold voltage or the undercut (difference between “as drawn” geometry and the
“effective” geometry). These values can vary as a function of the distance from the cen-
ter of the wafer, and thus are no longer model parameters.

The need for model parameters to vary on a per-instance basis implies that the .model
data structures must be duplicated for each instance, with only a small number of
parameters differing between all of the structures. This is tremendously expensive in
terms of storage. It also adversely affects the simulator’s initialization time and cache
performance. For the geometry information, the model writer typically changes the par-
titioning to allow new instance parameters; however, the designer must then wait for the



paramset: A Verilog-A/MS Implementation of SPICE .model Statements SPICE .model statements

3 of 19

updated model to be implemented in the simulator. For Monte Carlo, the model writer
does not always know what parameters should be instance-specific, as different compa-
nies may choose different subsets of parameters.

1.2 Binning

Binning is a term used to describe the automatic selection of a model statement based on
the value of various instance parameters. Multiple model statements have the same
name and include a mechanism that will distinguish between the model statements
based on the values given for instance parameters. For example, in CMOS processes, it
is difficult to get one set of model parameters to accurately represent the behavior of
MOSFETs of all possible lengths and widths. Typically, model statements are provided
for a set of geometry ranges, called “bins,” and parameters are optimized for devices
whose length and width fall with that bin. Binning works reasonably well in SPICE, but
it is limited to selection based on length and width. Verilog-A/MS needs a more general
model selection mechanism.

1.3 Model levels

As a variation of the above automatic model selection, one might want to implement a
collection of distinct but related modules, one of which is selected automatically for
each instance based on some other criteria. Consider providing a family of MOS mod-
ules that all use the same parameters, but are for different applications. One might pro-
vide a simple model for digital circuits, and more accurate model for analog circuits,
and a comprehensive model for RF circuits. Currently, these would all have to be imple-
mented in a single model if they are to share a model statement.

1.4 Hierarchy

Recently, important effects that need to be modeled have been identified only after the
models have been released, and the groups that are responsible for defining the models
have been unable to enhance the models in a timely manner. For this reason, the models
have been supplemented by combining a collection of components into a model defined
hierarchically (as a subcircuit). In SPICE, subcircuits cannot accept model statements,
and so a subcircuit must be defined for every set of model statements that might be
needed to implement a distinct hierarchical model. While this is not a big problem, it
does represent extra work for the modeling group, especially when it comes time to
update the structure of the model.

1.5 Parameters shared between many types of components

SPICE .model statements are restricted to being associated with only one type of compo-
nent. However, there are situations where users would like to specify parameters once to
be shared between many different types of components. This is true in electrical circuits,
though there are generally only a small number of basic component types, so it is not a
burden to duplicate the shared parameters. In compact modeling for micro electrical
mechanical systems (MEMS), the number of shared parameters (mechanical and per-
haps thermal properties of the substrate) is large, as is the number of different structures
(beams, gaps, anchors, plates, etc.) that would be defined as separate modules. Fortu-
nately, Verilog’s hierarchical referencing method allows this sharing naturally.



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Proposal

4 of 19

2.0 Proposal

In this proposal, the concept of a model statement is introduced into Verilog-A/MS, but
in a way that is inherently more powerful than the approach used in SPICE. The goal is to
develop a set of extensions to Verilog-A/MS so that all of the fundamental capabilities
provided by way of a SPICE model file today can be provided by Verilog-A/MS.

2.1 Paramset

The proposal assumes that the model equations are contained in a module for which no
distinction is made between instance and model parameters. The SPICE model statement
will be formulated in a more Verilog-like syntax and renamed paramset. The name has
been changed from model to try to reduce the confusion that results when talking about
the model definition and the model parameters.† In addition, the SPICE model statement
is substantially enhanced by adding the concept of user-defined parameters for the
paramset. These parameters will play the role of instance parameters.

Each paramset will be associated with a particular module, and the parameters of the
module are accessible within the paramset. The paramset itself can have parameters,
which become instance parameters for those instances that reference the paramset. The
parameters of the module can be assigned values in the paramset. The values assigned to
the module parameters can be constants, as in Spice model cards, or they could be Ver-
ilog “constant expressions,” which may include the parameters of the paramset.

The formal syntax for a paramset is found in Syntax 2-1. The module instance syntax is
updated to indicate that the leading module_identifier could be a
module_or_paramset_identifier.

It is also proposed that paramsets be overloadable, that is, that multiple paramsets with
the same name (identifier) can exist in the design.

†. The name paramset can be changed, however using model would create considerable
confusion because the parameters of the paramset are “instance” parameters. If the
collection of parameters were called a “model,” then the model’s parameters would
be instance parameters, which would be terribly confusing to SPICE users.



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Proposal

5 of 19

Syntax 2-1—Syntax for paramset

Assume that a behavioral MOS module called BSIM6 is defined and consider the follow-
ing example:

paramset n180nm bsim6;
parameter real l=0.18u;
parameter real w=0.25u;

.as = .ad = 1u∗ w;

.ps = .pd = 2∗ (0.15u + w);

.type = "n";

.vto = 0.25;

.kp = 20u;

.tox = 100n;

.nsub = 6.02e23;

.xj = 4e–7;

.vsat= 200k;

...
endparamset

This example defines a new composite statement in Verilog-A/MS called a paramset. It
contains parameter and variable declarations and assignment statements. The first line
of the statement contains the keyword paramset, the name of the paramset, and the

paramset_declaration ::=

{attribute_instance} paramset paramset_identifier module_or_paramset_identifier ;
paramset_item_declaration {paramset_item_declaration}

paramset_statement { paramset_statement }

endparamset
paramset_item_declaration ::=

{attribute_instance} parameter_declaration

| {attribute_instance} local_parameter_declaration

| {attribute_instance} string_parameter_declaration

| {attribute_instance} local_string_parameter_declaration

| aliasparam_declaration

| {attribute_instance} integer_declaration

| {attribute_instance} real_declaration

paramset_statement ::=

.module_parameter_identifier = expression ;
| statement

| paramset_seq_block

paramset_seq_block ::=

begin
 { paramset_statement }

end



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Proposal

6 of 19

name of the underlying module for the paramset. The opening line of the paramset is
followed by the parameter declarations and then a series of statements. As mentioned
previously, all of the module parameters are accessible from within the paramset. Any
name preceded by a period (other that parameter names in argument lists) is considered
a module parameter. The paramset itself may have local variables and parameters
defined. The paramset can contain any type of statement that is allowed in functions. In
particular, it may contain assignments, conditionals, and iterators.

To use a paramset, one simply uses the name of the paramset in lieu of the name of a
module when instantiating an instance of the underlying module. So in this case, rather
than using

l = 200n;
w=1u;
a = 1u∗ w;
p = 2∗ (0.15u + w);
bsim6 #(.l(l), .w(w), .as(a), .ad(a), .ps(p), .pd(p)) M1 (.d(n1), .g(n2), .s(n3), .b(n4));

one would use

n180nm #(.l(200n), .w(1u)) M1 (.d(n1), .g(n2), .s(n3), .b(n4));

The paramset parameters completely replace the module parameters (one cannot specify
module parameters on an “instance” of a paramset).

The paramset syntax is sufficient to add the concept of SPICE model statements to Ver-
ilog-A/MS. In addition, it offers the following advantages:

1. Rather than a hard-coded partition of the parameters between instance and model,
the user can specify which parameters should be available to be specified on the
instance statements.

2. Since the number of instance parameters can be minimized, the memory require-
ments are reduced.

3. Since Verilog-A/MS modules can contain structure as well as behavior, they cover
all the functionality of SPICE subcircuits. Paramsets can be applied to structural mod-
ules, thus becoming model statements for subcircuits.

The next sections consider paramset overloading and resolution as a method for imple-
menting automatic model selection.

2.2 Paramset Overloading and Resolution Criteria

A design may contain several paramsets with the same name. Thus, it is important to
specify rules for the simulator to determine which paramset should be used for a given
instance. The most basic rule is that the simulator shall pick a paramset that has declared
parameters for all of the overrides specified by the instance, and the overridden values
must be allowed by the ranges speficied in the parameter declaration. This rule covers
the basic SPICE binning functionality: a set of SPICE model statements could be imple-
mented in Verilog-A/MS by a set of paramsets, each of which has parameters l and w
with ranges defined by the LMIN, LMAX, WMIN, and WMAX values from the origi-
nal model statements.

However, the basic rule is not enough: it may happen that several paramsets would be
suitable for use with a particular instance. This may occur when the parameters speci-



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Proposal

7 of 19

fied on an instance are compatible with multiple paramsets. A trivial example would be
if multiple paramsets supported the same parameters, but had range limits on those
parameters whose ranges overlapped. In SPICE binning, an instance might have a length
equal to the LMAX of one bin and the LMIN of the adjacent bin. SPICE simulators tradi-
tionally accept the first model statement that they can and terminate the search. Verilog-
A/MS should have a more powerful resolution algorithm; the following is proposed.

For each instance,

1. Find all paramsets for which

a) the parameters overridden on the instance are parameters of the paramset

b) the parameters of the paramset, with overrides and defaults, are all within the
allowed ranges

c) the localparams of the paramset, computed from parameters, are within the
allowed range

2. Choose the paramset which has the fewest number of un-overridden parameters

3. Choose the paramset with the greatest number of range limited localparams

Even with this algorithm, there is no assurance that all ambiguities are eliminated. For
example, an instance with an override for parameter α might be associated with two
paramsets, the first accepts instances with parameters α and β, and the second with
parameters α and γ. In this case, either paramset could be used. It is the user’s responsi-
bility to eliminate this ambiguity by adding a third paramset that only accepts instances
with a parameter α. The simulator shall generate an error message if the resolution algo-
rithm does not select a unique paramset.

2.3 Error Conditions

The simulator shall report errors if any of the following conditions occur when resolv-
ing the paramset and module to use for an instance.

1. It is an error if a mismatch is detected between the ports of the instance and those of
the module underlying the paramset that was selected for that instance. The mis-
match may arise because

a) the instance connects to a port by name, but the module does not have a port by
that name

b) the instance connects ports by ordered list, but the ordered list has more
net_identifiers than the module has ports.

Note that an instance need not connect to all the ports of the module, whether by
name or by order.

2. It is an error if a paramset assigns a value to a module parameter and this value is
outside the range specified in the module declaration for that parameter. The con-
straints on parameter values should be enforced by the paramset, so that paramset
resolution problems can be debugged by examining only the paramsets.

3. It is an error if a paramset assigns a value to a non-existant module parameter, using
.unknown_identifier = expression ;

This could be a typographical error or it might be that the underlying module was
updated and a parameter was removed; either of these cases require investigation by
the user.



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Proposal

8 of 19

4. It is an error if an instantiation of a paramset specifies a named parameter override
for an identifier that does not correspond to a parameter declared for the paramset,
even if the identifier does correspond to a parameter declared for the module with
which the paramset is associated.

The AMS LRM does not specify what happens if an instantiation of a module speci-
fies a named parameter override for an identifier that is not a module parameter; this
should also be an error.

2.4 Binning

Binning is a particular sort of automatic model selection. Consider the following param-
set, and assume that it is one of many with the same name, and that each has the same
parameters, but different range limits for at least some of those parameters.

paramset n180nm bsim6;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
localparam real area=l∗ w from [0.0,5p);

.as = .ad = 1u∗ w;

.ps = .pd = 2∗ (0.15u + w);

.type = "n";

.vto = 0.25;

.kp = 20u;

.tox = 100n;

.nsub = 6.02e23;

.xj = 4e–7;

.vsat= 200k;

...
endparamset

This is the same paramset given on page 5 except that range limits have been added to
several parameters, and that a new parameter has been defined. In particular, range lim-
its were added to l and w and a new localparam area has been added.

If an instance statement like the following were encountered

n180nm #(.w(1u)) m1 (.d(n1), .g(n2), .s(n3), .b(n4));

it would use the paramset given above because the value given for w=1µ is within the
specified range for that parameter. If w were set to a value outside the range of this
paramset, say to 30µ, then another paramset would be used. If no paramset with the
name n180nm supports this value, an error is issued.

The localparam area shows how a more sophisticated form of binning is implemented.
In this case, the selection is based not just on the values of individual parameters, but
based on some function of multiple parameters. For example, the following instance

n180nm #(.l(0.25u), .w(25u)) m1 (.d(n1), .g(n2), .s(n3), .b(n4));

would not use the paramset given above because the area is not within the specified lim-
its.



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Proposal

9 of 19

Following this approach directly might result in many of the same parameter values
given in multiple paramsets. To avoid this, the paramsets can be arranged hierarchically,
with the common parameters given in the common paramset, and only those parameters
that are different between the various bins given on the top-level paramsets. Then, a
paramset may refer to either a module or another paramset.

2.5 Model Levels

The current trend with models is to make them more accurate and more complete, but
this also results in them being more expensive in terms of both the time required to eval-
uate them and the memory they require. To address this, the models themselves are
becoming partitioned into multiple versions with a varying capabilities. A relatively
simple stripped down version might be used early in the design process or in less
demanding parts of the circuit. More complicated and comprehensive versions would be
used during the verification process, particularly on more sensitive circuits. In addition,
one can imagine models being tailored for particular applications. There might be a ver-
sion where the temperature effects are modeled in great detail that is preferred for bias
circuits, and one in which the dynamic behavior is carefully modeled for high frequency
or high speed applications.

There are two way in which one might want to support different versions of a model. In
the first, the model itself is developed as a family of models, and it is simply a matter of
passing in a parameter, such as a level parameter, into the model to indicate which ver-
sion should be used. In the second, one might wish to use different models for each ver-
sion. For example, one might want to use MOS0 for the simplest and fastest model and
BSIM4 for the most complex. Of course, the user could do this today by specifying the
master name for each instance such that they get the desired level, but such is a very bur-
densome and error-prone process. Ideally, the user would give one master name that
refers to a family of models, and the actual model used would depend on instance
parameters, global parameters, etc. This type of automatic model selection can also be
done, assuming the following semantics are allowed:

1. Assume that different paramsets with the same name can associated with different
modules. For example, there could be two paramsets named nmos, one of which is
associated with a module named MOS0 and the other is associated with a module
named BSIM4.

2. Assume that the parameters to the paramset can take discrete values from a finite
range. For example, the parameters could be of string type, and that the range could
be a list of legal strings.

3. Assume that the default value for a parameter may fall outside the valid range given
for that parameter.

4. Assume that when multiple paramsets are present that share the same name, the
presence or absence of parameter can be used to determine which paramset is used.

Consider the situation where one wants to use either MOS0 or BSIM4 based on a param-
eter passed in by the user. In this case one might use ...

paramset n250nm mos0;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
parameter string vers="analog" from {"digital"};



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Proposal

10 of 19

...
endparamset

paramset n250nm bsim4;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
parameter string vers="analog" from {"analog"};
...

endparamset

Here we have two paramsets with the same name that both accept a parameter vers that
takes a default value of analog. When the user creates an instance that refers to n250nm,
then one of these two paramsets will be used depending on whether vers was given, and
if so, what value was used. If vers was given as analog, then the BSIM4 version is used as
it is the only paramset that will accept analog as a legal value for vers. If vers is given as
digital, then the MOS0 version is used. And if vers is not given, then again the BSIM4
version is used as it is the only paramset for which the default value for vers is a legal
value.

Alternatively, one might want to choose which model to use based on the current phase
of the design process, with the idea that simpler models are used early in the design pro-
cess and more complete models used later. In this case one might use ...

module design;
parameter string phase="initial design" from {"initial design", "final verification"};
...

endmodule

paramset n250nm mos0;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
localparam string phase=design.phase from {"initial design"};
...

endparamset

paramset n250nm bsim4;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
localparam string phase=design.phase from {"final verification"};
...

endparamset

Finally, one might want to use a different paramset based on the presence or absence of
parameters. For example, before layout one can generally just specify w and l for tran-
sistors, with things like as, ad, ps, and pd being approximated from w and l. However,
after layout the actually values for as, ad, ps, and pd are known and should be accepted
by the model. In this case, supporting the extra parameter increases the memory
required to represent each instance, which acts to slow simulations and reduce the
capacity of the simulator. One can avoid this extra expense when it is not needed using

paramset n180nm bsim6;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Proposal

11 of 19

.as = .ad = 1u∗ w;

.ps = .pd = 2∗ (0.15u + w);

...
endparamset

paramset n180nm bsim6;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
parameter real as=50f from [0,inf);
parameter real ad=50f from [0,inf);
parameter real ps=1u from [0,inf);
parameter real pd=1u from [0,inf);
...

endparamset

In this case, an instance for which a value was specified for either as, ad, ps, and pd
would use the second paramset. Any instance that did not specify any of those parame-
ters would use the first, according to the resolution algorithm rule 2, choosing the
paramset with the fewest un-overridden parameters.

2.6 Corners

Providing different model parameter sets for different process corners is possible using
the concepts already presented. Consider adding a corner field to the design constants
module defined above (page 10).

module design;
parameter string corner="tt" from {"ss", "tt", "ff", "sf", "fs"};
...

endmodule

paramset n250nm bsim4;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
localparam string corner=design.corner from {"tt"};
...

endparamset

In this case, the paramset would be used because the value of design.corner is allowed
by the range limit for the corner localparam in the paramset.

2.7 Paramsets of Paramsets

In the examples shown so far, paramsets reference modules. Paramsets can also refer to
other paramsets. In this way, on can define a base paramset and then use another param-
set to refine it. For example, one could define a paramset for a MOS model that defines
the traditional instance parameters, w, l, as, ad, ps, pd, etc. Then, another paramset
could be defined that offers only w and l as instance parameters, with as, ad, ps, and pd
being computed from w and l.

Another application would be to reduce the amount of redundant specification of model
parameters when supplying a set of corners. In this case, a base paramset gives all



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Proposal

12 of 19

parameter values that are shared between all the corners, and then a paramset is used to
specify each corner, as follow

paramset n250nm n250nm_base;
...
localparam string corner=design.corner from {"tt"};
.vth0 = vth0_tt;
...

endparamset

paramset n250nm n250nm_base;
...
localparam string corner=design.corner from {"ff"};
.vth0 = vth0_ff;
...

endparamset
...

paramset n250nm_base bsim4;
...
parameter vth0 = 0.3;
...

endparamset

2.8 Constants Module

In this section we consider the sharing of parameter values amongst various types of
components, as described in Section 1.5.

Consider the case of trying to model a system constructed from MEMS components.
Here there are technology parameters that ideally would be shared between multiple
components; parameters such as material and layer information (mechanical, thermal,
and electrical properties). To implement this, assume that a module is created at the top-
level of the design that contains only constants. Then, one could use the hierarchical
names of these constants to access these values from the various paramsets and modules
that define the available component models.

As a simple example of how this might work, assume that the following module

module semico250nmCMOS;
localparam real tox=100n;
localparam real nsub=6.02e23;
...

endmodule

is defined and is instantiated at the top level using

semico250nmCMOS process;

This creates a common place to place the technology parameters. They can be used
through out the language, and particularly in paramsets and module definitions, by giv-
ing the full path to the constants. For example,

tox = process.tox;



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Proposal

13 of 19

This proposal uses the localparam modifier (present in IEEE 1364-2001 Verilog, but not
currently in Verilog-A/MS) as a way of indicating that the value is a constant.
Localparams act like parameters in the sense that their value must be given when
defined and that value cannot be changed within the module, but they cannot be set by
passing values into the module when instantiating it. Parameters or localparams must be
used because variables are not set at elaboration time. The use of localparam is not
required, but the use of parameter would allow the value to be overridden when instan-
tiated.

Use of a constants module is another method one might support corners. Suppose the
following modules are defined:

module semico250nmCMOS_tt;
localparam real tox=100n;
localparam real vth0_n = 0.7;
...

endmodule

module semico250nmCMOS_ff;
localparam real tox=90n;
localparam real vth0_n = 0.65;
...

endmodule

module semico250nmCMOS_ss;
localparam real tox=110n;
localparam real vth0_n = 0.75;;
...

endmodule

The paramset for an NMOS transistor could then reference process.tox and pro-
cess.vth0_n, and depending on which module was instantiated at top level as process,
would get the appropriate values.

This same approach can be used to support Monte Carlo simulations, as described in
Section 3.1. The random variables are defined in a block that externally looks like a con-
stants module. Additional information would be needed to describe the statistics of the
random variables, such as variance, distribution, correlation, etc. Whether that block is
defined inside the Verilog-A/MS description of the design or outside, the values can be
accessed using a hierarchical name.

2.9 Output Variables

Before concluding the chapter on paramsets, brief mention should be made of output
variables.

With the proposed extensions to Verilog-A/MS to support compact modeling, one can
declare certain variables to be output variables by giving them a description. In other
words, the act of giving a variable a description marks the variable as interesting and
makes it available for output. This is done as follows,

(*desc="Transconductance"*) real gm;



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Statistics and Monte Carlo

14 of 19

Once marked for output, its name and value should be included by the simulator in oper-
ating point reports, etc.

This same idea is also available within paramsets. Any output variable of a module is
automatically available as an output variable for a paramset that references that module.
Additional output variables can be defined within a paramset, and their values can be
made functions of module and paramset parameters or of output variables from either
the module or the paramset. This implies that it is possible to read the value of an output
variable for the module from within the paramset, but it is not possible to write it. As
such, a module output variable must not be the target of an assignment statement within
a paramset. However, it is possible to declare a local variable within the paramset that
has the same name as an output variable of the module, and in doing so the local vari-
able will take the value of the output variable, but it can be locally overwritten. Whether
the local variable is an output variable will depend on whether it has a description. So,
this provides a mechanism for either hiding undesired module output variables or modi-
fying the values and descriptions of the module’s output variables.

The following example assumes that gm, cpi, and cmu are output parameters for the
base module and the following statements are found within a paramset to create an addi-
tional output parameter ft. They declare ft as being output parameters for the paramset
and then compute its value.

(*desc="Transition frequency"*) real ft;
ft = .gm/(2∗ ‘M_PI∗ (.cpi+.cmu));

3.0 Statistics and Monte Carlo

The paramset can be used to help the simulator efficiently store values for Monte Carlo
simulations, by indicating which parameters need to be stored on a per-instance basis. In
order to actually perform a Monte Carlo analysis, however, these parameters need to
have random values chosen from particular distributions. This chapter describes a
method of describing the statistics for a design or process and using these statistics in a
paramset to generate values for a simulation.

3.1 Monte Carlo

Monte Carlo analysis sets parameter values from random variables. For the moment I
will assume that some mechanism is defined to allow us to define those random vari-
ables, with the actual mechanism described later. I will further assume that from the
paramset, the values of the random variables are accessed in the same manner as one
would access the values given in a constants module.

Start by assuming that object named c18ustats is defined that contains the declaration
for a collection of random variables (described in the next section), partitioned between
process variables (value is shared for all instances where it is used) and mismatch vari-
ables (each use of the variable gets draws a different value). Assume further that the
c18ustats object declares the statistical averages, the distributions associated with each
variable, and the correlation between variables. Then, providing instances whose param-
eters vary as a function of these random variables is simply a matter of using the vari-
ables when specifying the paramsets.



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Statistics and Monte Carlo

15 of 19

paramset n180nm bsim6;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
localparam real area=l∗ w from [0.0,5p);

.as = 1u∗ w + c18ustats.da;

.ad = 1u∗ w + c18ustats.da;

.ps = 2∗ (0.15u + w) + c18ustats.dp;

.pd = 2∗ (0.15u + w) + c18ustats.dp;

.ld = 50nm + c18ustats.dld

.type = "n"

.vto = 0.25 + c18ustats.dvto;

.kp = 20u + c18ustats.dkp;

.tox = 100n;

.nsub = 6.02e23;

.xj = 4e–7;

.vsat= 200k;

...
endparamset

Several, but not all, of the random variables used in the above paramset, would be mis-
match variables. As the value for these would be different for every instance, they would
be identified and treated internally in a way that is very similar to paramset parameters
as they will be different for every instance.

3.2 Statistics Blocks

Statistics blocks are used to define random variables that are used to describe the statis-
tical variations in component parameters. A statistics block can contain any statement
that can be found in a function declaration. In addition, it contains named or unnamed
“process” and “mismatch” blocks. Process blocks are used to specify values for random
variables that exhibit a batch-to-batch type variations, and mismatch blocks specify the
values for random variables that exhibit on-chip or device mismatch variations. Gener-
ally one declares a collection of variables within the statistics block and give those vari-
ables within the process or mismatch blocks. These variables are accessed from foreign
modules with their hierarchical name. The process blocks are reevaluated once every
simulation run whereas the mismatch blocks are reevaluated every time one of its vari-
able values is accessed. Generally the values of the variables are the result of a call to a
random function, and every evaluation of the block changes the values of its variables.

During a Monte Carlo analysis, the variables specified in the process block are updated
once per Monte Carlo iteration, and are used to represent batch-to-batch or process vari-
ations, whereas the variables specified in the mismatch block are updated on a per-use
basis and are typically used to represent device-to-device mismatch for devices on the
same chip.

statistics c18ustats;
real vto, rsh, tox, kdxl, rshsp, xisn, xisp, seed;
seed = 5430932;
process begin

vto=$rdist_normal(seed, 0.5, 0.1);
rsh=$rdist_normal(seed, 100, 12);



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Statistics and Monte Carlo

16 of 19

tox=ln($rdist_normal(seed, 1e–8, 1e–9));
kdxl=$rdist_uniform(seed, 15e–9, 25e–9);

end
mismatch begin

rshsp=$rdist_normal(seed, 25, 2);
xisn=$rdist_normal(seed, 10, 0.5);
xisp=$rdist_normal(seed, 10, 0.5):

end
endstatistics

It is possible to create correlated random variables by using linear combinations of inde-
pendent random variables.

3.3 Hierarchical Virtual Parameters

In addition to the parameters that are declared on a paramset, 7 hierarchical virtual
parameters are accepted and accessible. In Verilog-A/MS, any parameter that begins
with a $ shall be considers a virtual parameter. These are parameters that are accepted
by instances of all types of modules, but are not explicitly declared in the module defin-
tion. Currently, 7 such parameters are accepted: $m, $n, $x, $y, $angle, $vflip, and
$hflip.

1. The value of $m is intended to contain the shunt multiplicity factor for a module (the
number of identical devices that should be combined in parallel and modeled). $n is
the serial multiplicity factor (the number of identical devices that should be com-
bined in series and modeled; this may only make sense for two terminal devices). $x
and $y are the offsets of the location of the center of the device relative to the center
of the context in which it exists (in meters). $angle is the rotation of the device rela-
tive to the context in which it exists (in degrees CCW). Finally, $vflip and $hflip
specify the device is flipped either vertically or horizontally ($vflip specifies a verti-
cal flip which would be about a horizontal axis (before rotation)).

2. These parameters are predefined and have values for all instances. If not otherwise
set, the values are $m = 1, $n = 1, $x = 0, $y = 0, $angle = 0, $vflip = 1, and $hflip =
1.

3. The values of $m, $n, $x, y$, and $angle are all real numbers. The value of $vflip and
$hflip are either –1 or +1.

4. The values are available within paramset or a module. The values are a function of
both the value of the parameters specified on the associated instance statement and
on the value of the parameter within the hierarchical context in which the instance is
found. The resolved values within the paramset or module are given by the following
relationships

$mresolved = $mspecified $mhier (1)

$nresolved = $nspecified $nhier (2)

$xresolved = $xspecified + $xhier (3)

$yresolved = $yspecified + $yhierf (4)

$angleresolved = mod360 ($anglespecified + $anglehier) (5)



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Statistics and Monte Carlo

17 of 19

$vflipresolved = $vflipspecified $vfliphier (6)

$hflipresolved = $hflipspecified $hfliphier (7)

5. The output of every current source in the analog blocks is multiplied by the resolved
value of $m of the paramset/module that contains the block. The value returned by
every current probe within an analog block is divided by the resolved value of $m
associated with that block.

6. The output of every voltage source in the analog blocks is multiplied by the resolved
value of $n of the paramset/module that contains the block. The value returned by
every voltage probe within an analog block is divided by the resolved value of $n
associated with that block.

7. Parameters are applied to an instance in the following manner,

M1 #(..., .$m(2)) bsim6 ( ... )

(we also should consider using $m(2) rather than .$m(2) as a way of shortening the
parameter list).

8. The value of hierarchical parameters are accessed from within a module or paramset
in the following manner,

real m = $m;

The idea with these parameters is that the size, location, and orientation of every
instance can be specified relative to the size, location, and orientation of the block in
which it is found. In this way, once the size, location, and orientation its parent is know,
then its size, location, and orientation is also known.

The parameters $m and $n directly affect the behavior of the modules by implicitly
affecting the behavior of the access functions. The other hierarchical parameters would
only affect the behavior of the module if their values were explicitly included in the
behavioral description.

3.4 Statistical Descriptions from Layout

With the constructs available it is possible to describe statistical mismatch variations in
component parameters as a function of size, location, and orientation of devices as
placed in the layout. Consider the parameter drho which is assumed to vary linearly
across the die, with a random slope. This can be modeled using 4 random variables,
drho00, drho01, drho10, and drho11. Then the value of drho at x and y would be

drho(x, y) = (1 – x)drho00 + x drho10 + (1 – y)drho01 + y drho11 (8)

This would be an approximation to the value of drho that would be used for a device
with a center that falls at x, y. This approximation can be improved by including correc-
tions for size (m and n) and orientation (angle). For example, drho(x, y) might become

drho(x, y) = [(1 – x)drho00 + x drho10 + (1 – y)drho01 + y drho11]/sqrt(m n) (9)

This could be described with statistics blocks and paramsets in the following way

statistics rhostats;
process begin

rhooffset=gauss(.mean(100.0), .std(20.0));



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Implementation

18 of 19

end
mismatch begin

drho00=gauss(.mean(0), .std(20));
drho01=gauss(.mean(0), .std(20));
drho10=gauss(.mean(0), .std(20));
drho11=gauss(.mean(0), .std(20));

end
endstatistics

paramset n180nm bsim6;
rho = rho0 + (

(1 – $x)∗ rhostats.drho00 + $x∗ rhostats.drho10
+ (1 – $y)∗ rhostats.drho01 + $y∗ rhostats.drho11

)/sqrt($m∗ $n);
...

endparamset

Then a matched quad of devices in the configuration shown on the
right can be instantiated as follows,

n180nm #( ..., .$x(–3), .$y(4), .$angle(0)) I1 ( ... )
n180nm #( ..., .$x(4), .$y(3), .$angle(90)) I2 ( ... )
n180nm #( ..., .$x(3), .$y(–4), .$angle(180)) I3 ( ... )
n180nm #( ..., .$x(–4), .$y(–3), .$angle(270)) I4 ( ... )

In this way the matching of the 4 devices as a function of their placement and orienta-
tion is automatically determined. In this example, the orientation is never used. This is
because rho varies linearly across the chip. It would come into play if the variation were
more a more complicated function of location.

4.0 Implementation

In SPICE, component parameters were partitioned into instance and model parameters
for reasons of both user convenience and for efficiency. The efficiency came from the
fact that many parameters can be placed in a single data structure that is shared between
many instances, thereby reducing the memory required for the simulation. In this pro-
posal, the partition is determined by the paramset, which is independent of the module
description. It is the paramset parameters that act as the instance parameters, all others
are model parameter. So given that the partition between instance and model parameters
is not specified when the module is written, how is the efficiency of SPICE maintained?
One possible way is as follows: Compile the module assuming that all module parame-
ters are contained in a single array. Then place any paramset (instance) parameters in a
separate smaller data structure. Before evaluating an instance, swap the values associ-
ated with the paramset parameters. A similar approach can be used to handle the Monte
Carlo mismatch parameters, though one would probably want to use a separate data
structure for the mismatch parameters to allow the random variation in the circuit to be
easily enabled and disabled.

I1

I2

I3

I4



paramset: A Verilog-A/MS Implementation of SPICE .model Statements Compatibility with Existing Model Files

19 of 19

5.0 Compatibility with Existing Model Files

To assure rapid adoption, it will be necessary for Verilog-A/MS to be compatible with
existing SPICE model files. There is a tremendous amount of investment in those files,
and they will not be replaced quickly, if ever. So from a practical perspective a Verilog-
A/MS simulator must be able to either directly read existing model files, or it must be
possible to write an automatic translator. Fundamentally it should be possible to do
either as long as Verilog-A/MS does not need information that is not available from in
the model files. And in fact, there is one such piece of information, and that is the choice
of which parameters should be instance (paramset) parameters. In SPICE, this informa-
tion is contained within the simulator and is not available from the model files. As such,
in order to enable the translation of SPICE model files, an extra file is needed, one that
contains the list of instance parameters. This file should be very small and easy to cre-
ate, and so is not considered a material barrier. Since it is not needed in a purely Verilog-
A/MS implementation, the format of this file is not described. Instead, the format would
be defined for each implementation by the vendor. It is hoped that easily translation of
SPICE model files to Verilog-A/MS files will encourage a quick migration away from
proprietary formats to industry standard formats.

6.0 Summary

In this proposal, the larger issue of the SPICE modeling infrastructure is addressed. A
proposal is made that attempts to support all of the capabilities needed in today’s SPICE

model files. This was needed to assure that modeling infrastructure in the future is as
simulator neutral as possible. The ideas is that once Verilog-A/MS becomes a viable
language for compact modeling (once efficient robust implementations of the Verilog-
A/MS extensions for compact modeling become available and are adopted), then found-
ries would provide model parameters that support all of the normal capabilities (bin-
ning, corners, Monte Carlo, levels, etc.) as they do today, but they would do it in an
industry standard simulator neutral format that includes the definition of the models
themselves. In this way, the models would be released with the process, would likely be
tailored for the process, and would be usable in a wide variety of simulators, and each of
the simulators would interpret the models in the same way and would have access to all
of the model’s features.


	1.0 Spice .model statements
	1.1 Inflexible partition between instance and model parameters
	1.2 Binning
	1.3 Model levels
	1.4 Hierarchy
	1.5 Parameters shared between many types of components

	2.0 Proposal
	2.1 Paramset
	2.2 Paramset Overloading and Resolution Criteria
	2.3 Error Conditions
	2.4 Binning
	2.5 Model Levels
	2.6 Corners
	2.7 Paramsets of Paramsets
	2.8 Constants Module
	2.9 Output Variables

	3.0 Statistics and Monte Carlo
	3.1 Monte Carlo
	3.2 Statistics Blocks
	3.3 Hierarchical Virtual Parameters
	3.4 Statistical Descriptions from Layout

	4.0 Implementation
	5.0 Compatibility with Existing Model Files
	6.0 Summary

